
JSM Overview
—
David Solt, Ph.D.
HPC Software Architect

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Presentation Goals Give a broad overview of JSM

Present basic concepts and functionalities

Be available for assisting with complex use cases

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Topics Basic concepts of JSM

JS utilities

Resource Sets

Simple layouts

Advanced layouts

Binding and OpenMP

MIMD support

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

JSM is…
Launcher

� like srun, prun, mpirun, blaunch, etc

PMIx server

� MPI apps do not need to create an MPI daemon

Sub-resource manager

� LSF is the high level RM, but jsrun manages a users
resources

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Basic concepts mpirun launch flow:

� Determine hosts given to you by resource manager

� Tell mpirun to use some subset of those hosts to run
your job

jsrun launch flow:

� Describe the resources you want to JSM

� JSM runs your job on the resources it chooses to meet
your criteria.

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

JSM utilities
jsrun - create a job step (or reservation)

jslist - list running, completed or killed job steps

jskill - signal a job step

jswait - wait for the completion of a job step

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Resource Sets jsrun defines bundles of resources (CPU, GPU &
memory)

� called resource sets

� each resource set will result in a cgroup (unless
cgroups are turned off)

� jsrun allocates CPU’s as physical cores (i.e. 44 cores
per box - core isolation)

Why resource sets?

� Allows multiple jsruns to divide up resource on a node

� Simple way to describe the resources available to
each rank

� Simple way to enforce locality between ranks

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

The basics How many resource sets to create:

� -n, --nrs <#|ALL_HOSTS> How many
resource sets to create

How many CPUs:

� -c, --cpu_per_rs <#|ALL_CPUS> How many
CPU’s in each RS

How many GPUs:

� -g, --gpu_per_rs <#|ALL_GPUS> How many
GPU’s in each RS

(Memory can also be assigned, but is not enforced)

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Simple examples jsrun -n ALL_HOSTS -c ALL_CPUS -g ALL_GPUS ….

� create a job step with all the resources in the entire
allocation

� resources grouped by node

jsrun -n 64 -c 6 -g 1 …

� create a job step with 64 resource sets each with 6
cpus and 1 gpu

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Two job steps at once Assume 2 nodes, 40 CPU’s each (core isolation), 6 GPU
each

Want to run 2 job steps at the same time that each use
1/2 the resources:

� jsrun --nrs 2 -c 20 -g 3 a.out

� jsrun --nrs 2 -c 20 -g 3 b.out

What do you expect will happen?

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Option A:

4

3

5

1

2

0

X X X X

Socket 0 Socket 1

NUMA
0

Memory 0 Memory 1

NUMA
1

NUMA
2

NUMA
3

Node 0

4

3

5

1

2

0

X X X X

Socket 0 Socket 1

NUMA
0

Memory 0 Memory 1

Node 1

NUMA
1

NUMA
2

NUMA
3

A.OUTA.OUT B.OUT B.OUT

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Option B:

4

3

5

1

2

0

X X X X

Socket 0 Socket 1

NUMA
0

Memory 0 Memory 1

NUMA
1

NUMA
2

NUMA
3

Node 0

4

3

5

1

2

0

X X X X

Socket 0 Socket 1

NUMA
0

Memory 0 Memory 1

Node 1

NUMA
1

NUMA
2

NUMA
3

A.OUTA.OUT B.OUT B.OUT

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Option C: Chaos!

4

3

5

1

2

0

X X X X

Socket 0 Socket 1

NUMA
0

Memory 0 Memory 1

NUMA
1

NUMA
2

NUMA
3

Node 0

4

3

5

1

2

0

X X X X

Socket 0 Socket 1

NUMA
0

Memory 0 Memory 1

Node 1

NUMA
1

NUMA
2

NUMA
3

A.OUT

A.OUT

B.OUT

B.OUT

A.OUT

B.OUT

A.OUT

A.OU
TB.OUT

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

What will you get? Option A is JSM’s preferred allocation

Options B and C are possible

� but in reality would only be given if other jobs were
running that had segmented the CPU/GPU space.

Option A or B can requested

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Influencers of resource sets - RS
per host

-r, --rs_per_host Specifies the number of resource sets
on each host

� jsrun -r 1 --nrs 2 -c 20 -g 3 a.out

� jsrun -r 1 --nrs 2 -c 20 -g 3 b.out

� Will force scenario B (-r 2 will force scenario A)

-l, --latency_priority=<comma separated list>

� priorities are cpu-cpu, gpu-gpu, mem-mem, mem-gpu,
mem-cpu, gpu-cpu, CPU-CPU, GPU-GPU, MEM-MEM,
MEM-GPU, MEM-CPU, GPU-CPU .

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Influencers of resource sets -
latency_priority

-l, --latency_priority=<comma separated list>

� priorities are cpu-cpu, gpu-gpu, mem-mem, mem-gpu,
mem-cpu, gpu-cpu, CPU-CPU, GPU-GPU, MEM-MEM,
MEM-GPU, MEM-CPU, GPU-CPU .

� Default set by configuration file

� Capital letters: Only resources which are optimal for
the given priority will be accepted (wait for other
steps to finish if necessary)

� Lower case: Use the resources which are best
available at the time

� Default default is: gpu-cpu,cpu-mem,cpu-cpu

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

--latency_priority options cpu-cpu - Select CPUs from the same socket

cpu-gpu - Select CPUs & GPUs from the same

socket

cpu-mem - Select CPUs and memory from same

NUMA

gpu-gpu - Select GPUs that are from the same

socket

gpu-mem - Select GPUs & memory that are from

the same socket

mem-mem - Select memory that comes from the

same NUMA

When do you actually care?

� jsrun --nrs <x> -c 12 -g 6

� Do you prefer CPU’s close or CPU’s to GPU’s

close?

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Option A: cpu-cpu Option B: cpu-gpu

4

3

5

1

2

0

X X X X

Socket 0 Socket 1

NUMA
0

Memory 0 Memory 1

NUMA
1

NUMA
2

NUMA
3

Node 0

A.
OU
T

A.O
UT

A.O
UT

A.O
UT

4

3

5

1

2

0

X X X X

Socket 0 Socket 1

NUMA
0

Memory 0 Memory 1

NUMA
1

NUMA
2

NUMA
3

Node 0

A.
OU
T

A.O
UT

A.O
UT

A.O
UT

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Save, keep or use or re-use an
allocation

Allocations can be created and saved (-A, --allocate_only)

� jsrun --allocate_only --nrs 8 -c 6 -g 6 --rs_per_host 1

Allocations can be used immediately and then removed

� jsrun --nrs 8 -c 6 -g 6 --np 8 a.out

Allocations can be used/removed but saved for later recreation:

� jsrun --save_resources myoptimal16noderun.txt --nrs 8 -c 6 -g 6 --np 8 a.out

� jsrun --use_resources myoptimal16noderun.txt --np 8 a.out

� jsrun --use_resource myoptimal16noderun.txt -A

Saved allocations can be re-used (-J, --use_reservation)

� jsrun --J 1 --np 8 a.out
SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Creating Tasks How many tasks to create

Where to place them

How many cores to assign to each task

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

How many tasks -p, --np <x>

� Create x tasks

-a, --tasks_per_rs <x>

� Create x tasks per resource set

(Nothing)

� Get 1 task per resource set by default

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Simple layouts 1 task per core on all nodes:

� jsrun a.out (with default config file)

� jsrun -c 1 --nrs X --np X a.out

1 task per 4 cores, 1 GPU each:

� jsrun -c 4 -g 1 --nrs X --np X a.out

8 tasks per core:

� jsrun -c 1 --nrs X --np $((X*8)) a.out

1 task per core, 3 GPU’s per task, 1 task per node

� jsrun -c 1 -g 3 --rs_per_node 1 --nrs X a.out

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Where to place tasks -d, --launch_distribution <packed|cyclic|plane:<x>>

� How to map tasks to resource sets.

� Do you want contiguous ranks in each resource set?

� Do you want non-contiguous ranks in each resource set?

� NOTE: In GA release, packed will pack ranks based on
how many cores each rank is assigned (See --bind
packed:<x>)

-H, --launch_node_tasks=<#>

� Schedule the specified task number on the launch node

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

How many cores to reserve for
each task

Binding: how many and which cores to bind to a task

-b, --bind=<none, rs, packed[:<#>]>

� none - don’t bind

� rs - bind to the entire resource set

� packed:<n> - bind each task to at most n cores.
Choose cores that are closest to each other.

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

OMP_PLACES

--bind option cores bound to OMP_PLACES

default 1 core per task ALL SMT threads from one core

none none (though cgroup will still limit cores
if cgroups are on)

1 task per RS: All SMT threads in RS
> 1 task per RS: unset

rs all cores in the RS All SMT threads in RS

packed:<n> n cores from the RS ALL SMT threads from n cores

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Advanced layouts 1 task per core, each 4 tasks share 1 GPU:

� jsrun -c 4 -g 1 --a 4 a.out

1 task per core, 8 tasks communicate via shared memory
and need to be close to one another:

� jsrun -c 8 --a 8 --latency_priority CPU-CPU a.out

1 task per 4 cores, every 4 tasks share a GPU:

� jsrun -c 16 -g 1 --a 4 --bind packed:4 --
launch_distribution packed a.out

Odd ranks on one host, even on another

� jsrun --nrs 2 -c ALL_CPUS --np X --launch_distribution
cyclic a.out

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

MIMD support jsrun -f <appfile>

Appfile:

<# ranks> : <reservation #> : <command>

<# ranks> : <reservation #> : <command>

<# ranks> : <reservation #> : <command>

etc.

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

jslist

sh-4.2$ jsrun --nrs 2 -c 4 -g 1 /bin/true

sh-4.2$ jslist -R
parent cpus gpus exit

ID ID nrs per RS per RS status status
==
1 0 2 4 1 0 Complete

RS 0 HOST c712f8n10:

SOCKET 0: cpus: 0-3 gpus: 0 mem: 4000
RS 1 HOST c712f8n10:
 SOCKET 0: cpus: 4-7 gpus: 1 mem: 4000

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

jslist

sh-4.2$ jsrun --np 1 /bin/sleep 100 &
sh-4.2$ jswait
sh-4.2$ echo $?
0

sh-4.2$ jsrun --np 1 /bin/false
sh-4.2$ jswait <job step id of previous jsrun>
sh-4.2$ echo $?
1

Can be used to implement flow control between job steps.

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Summary JSM launching….

Define resource sets (CPU’s & GPU’s)

(Use jslist -R to see what you got)

Determine number of tasks

Determine task distribution

Determine cores per task

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

Environmental influencers -h, --chdir=<path>

� Change current working directory.

-i, --immediate

� Force jsrun to return immediately.

-L, --use_spindle=<0|1>

� Should spindle be used

-M, --smpiargs=<SMPI args>

� Quoted argument list meaningful for Spectrum MPI applications

-P, --pre_post_exec=<script info>

-X, --exit_on_error=<0|1>

� Determine if a rank error should result in namespace abort

-D, --env_no_propagate=<var>

� Exclude this environment variable from being propagated

-E, --env=<var=val>

� Environment variable to be set before exec of tasks

-F, --env_eval=<var=val>

� environment variable to be evaluated and set before exec of tasks

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

stdio related options -e, --stdio_mode=individual | collected | prepended

� Individual: Every rank writes to its own local file

� Collected: IO goes through jsrun

� prepended: collected + rank identification on each line

-stdin_rank=<#>

� Collected mode only. Only one rank may receive stdin in
collected mode.

-k, --stdio_stderr=<filename>

� stderr filename (default: jsrun for collected, /dev/null for
individual)

-o, --stdio_stdout=<filename>

� stdout filename (default: jsrun for collected, /dev/null for
individual)

-t, --stdio_input=<filename>

� stdin filename (default: jsrun for collected, /dev/null for
individual)

SMPI / OLCF Readiness Workshop / March 5, 2018 / © 2018 IBM Corporation

